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1. Introduction
Suppose the set of all real or complex sequences is denoted by Λ. By ℓ∞, c0 and

c, we denote the spaces of all bounded, null and convergent sequences, respectively,
which are subspaces of Λ normed by ∥ x ∥∞= supk |xk|. Also the spaces of all
convergent, bounded and absolutely convergent series are denoted by cs, bs and ℓ1,
respectively. Through out the paper summation without limits runs from 0 to ∞.
For p = (pk) a bounded sequence of strictly positive real numbers, Maddox [18]
introduced c0 (p) , c (p) and ℓ∞ (p) as:

c0 (p) =
{
ξ = (ξk) ∈ Λ : lim

k→∞
|ξk|pk = 0

}
,

c (p) =
{
ξ = (ξk) ∈ Λ : lim

k→∞
|ξk − l|pk = 0 for some l ∈ R

}
,

ℓ∞ (p) =

{
ξ = (ξk) ∈ Λ : sup

k∈N
|ξk|pk < ∞

}
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and these are complete spaces with the paranorm

g (ξ) = sup
k∈N

|ξk|pk/M , where M = max{1, sup
k

pk}.

Now, define the set M (X, Y ) = {ζ = (ζk) : ξζ = (ξkζk) ∈ Y, ∀ξ ∈ X} . The α− ,
β− and γ− duals of a sequence space X are as follows:

Xα = M (X, ℓ1) , X
β = M (X, cs) andXγ = M (X, bs) .

The difference sequence spacesX (∆) = {ξ = (ξk) : ∆ (ξk) ∈ X} forX = {c0, c, ℓ∞}
was introduced by Kızmaz [17], which was generalized by Et and Çolak [12]. Then
difference sequence spaces attracted the attention of several authors [5, 12] in dif-
ferent directions. Recently, Jena and Dutta [[14], [15]] introduced Bell difference
sequence spaces and fractional ordered Euler Riesz difference sequence spaces. The
difference space bvp consisting of the sequence x = (xk) such that (xk − xk−1) ∈ ℓp
have been introduced in the case 0 < p ≤ 1 by Altay and Başar [1], and in the case
1 ≤ p ≤ ∞ by Başar and Altay [10]. The reader also refer to the recent mono-
graphs [9] and [20], and references therein, devoted to the matrix transformations
and related topics, and the papers [2], [3], [6], [19], [22] and [23] on the domain of
certain triangles in some paranormed Maddox sequence spaces.
For a proper fraction τ , Baliarsingh [7], Baliarsingh & Dutta [8] introduced the
fractional difference operator ∆(τ) as

∆(τ)xk =
∑
j

(−1)j
Γ (τ + 1)

j!Γ(τ − j + 1)
xk−j, (1.1)

along with its inverse

∆(−τ)xk =
∑
j

(−1)j
Γ (−τ + 1)

j!Γ(−τ − j + 1)
xk−j. (1.2)

It is assumed that the series of fractional difference operators are convergent.
The Pascal mean P described as Pascal matrix P = pmk is defined by (see [21]).

P = pmk =


(

m
m− k

)
if 0 ≤ k ≤ m

0 if k > m.

Its inverse P−1 is given by

(
P−1

)
mk

=

 (−1)m−k

(
m
m− k

)
if 0 ≤ k ≤ m

0 if k > m.
(1.3)
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Pascal sequence spaces p∞, p0 and pc are introduced by Polat [21]. Then Aydın
and Polat [5] introduced Pascal difference sequence spaces of integer order m as,

X
(
∆(m)

)
=
{
ξ = (ξk) ∈ Λ : ∆(m)ξ ∈ X

}
, (1.4)

for X = {p∞ , p0 , pc}.
Recently, Dutta and Jena [11] introduced the matrix P̃ =

(
P∆(τ)

)
by combining

Pascal mean P and fractional difference operator ∆(τ), which can be expressed as

P̃ =
(
P∆(τ)

)
mk

=

{∑m
l=k(−1)l−k

(
m

m−l

) Γ(τ+1)
(l−k)!Γ(τ−l+k+1)

, if 0 ≤ k ≤ m

0, if k > m.
(1.5)

Equivalently, it is written as

P̃τ̃ = (pmk) =


1 0 0 0 . . .

(1− τ̃) 1 0 0 . . .

(1− 2τ̃ + τ̃(τ̃−1)
2!

) (2− τ̃) 1 0 . . .
...

...
...

...
. . .

 .

and the inverse of P̃ =
(
P
(
∆(τ)

))
is given by(

P̃−1
)
mk

=

{∑m
j=k (−1)m−k ( j

j−k

) Γ(−τ+1)
(m−j)!Γ(−τ−m+j+1)

, if 0 ≤ k ≤ m

0, if k > m.
Now, we have(

P
(
∆(τ)

)
x
)
n
=

n∑
k=0

(
n

n− k

) n∑
l=0

(−1)l
Γ (τ + 1)

l!Γ(τ − l + 1)
xk−l

=
n∑

k=0

[
n∑

l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(l − k)!Γ (τ − l + k + 1)

]
xk,

for n, k ∈ N0 = N ∪ {0} . In particular for n = 0, we have
(
P
(
∆(τ)

)
x
)
0
= x0, and

similarly,
(
P
(
∆(τ)

)
x
)
1
= (1− τ)x0 + x1,(

P
(
∆(τ)

)
x
)
2
=
(
1− 2τ + τ(τ−1)

2

)
x0 + (2− τ)x1 + x2, ..... and so on.

Lemma 1.1. [11] The operator P̃ = P
(
∆(τ)

)
is linear.

Now our interest is to introduce the new paranormed difference sequence
spaces of fractional order which generalizes many known spaces. We introduce the

spaces c0

(
P̃, p

)
, c
(
P̃, p

)
, ℓ∞

(
P̃, p

)
by using the product of Pascal mean P with

fractional operator ∆(τ). We prove certain topological properties and characterize
the matrix transformations of these spaces.
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2. New sequence spaces

Now, for a positive real number τ and a bounded sequence p = (pk), we define
the following classes

c0

(
P̃, p

)
=
{
ξ = (ξk) ∈ Λ : P̃ξ ∈ c0(p)

}
,

ℓ∞

(
P̃, p

)
=
{
ξ = (ξk) ∈ Λ : P̃ξ ∈ ℓ∞(p)

}
,

c
(
P̃, p

)
=
{
ξ = (ξk) ∈ Λ : P̃ξ ∈ c(p)

}
.

The above classes generalize the following spaces as follows:
(i) For τ = 0 and p = e = (1, 1, 1, ...), it reduces to pc, p0 and p∞, studied by Polat
[21].
(ii) For τ = 1 and p = e , it reduces to pc(∆), p0(∆), p∞(∆), studied by Aydın and
Polat [4].
(iii) For τ = m and p = e, it reduces to pc

(
∆(m)

)
, p0
(
∆(m)

)
and p∞

(
∆(m)

)
, where

∆(m) =
∑m

i=0−1j
(
m
j

)
xm−j studied by Aydın and Polat [5].

(iv) For p = e = (1, 1, 1, ...), it reduces to ℓ∞

(
P̃ τ̃
)
, introduced by Dutta and Jena

[11].
Now with P̃ - transform of ξ = (ξn) we define the sequence ζ = (ζn) , (n ∈ N) as
follows :

ζn =
(
P̃ξ
)
n
=

n∑
k=0

n∑
l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)
ξk. (2.1)

Theorem 2.1. The spaces ℓ∞

(
P̃, p

)
, c0

(
P̃, p

)
and c

(
P̃, p

)
are linear spaces

paranormed by

g1 (ξ) = sup
n

∣∣∣∣∣
n∑

k=0

n∑
l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)
ξk

∣∣∣∣∣
pk
M

(2.2)

if and only if infk pk > 0.

Proof. Consider the space c0

(
P̃, p

)
. We observe that g1 (θ) = θ, where θ =

(0, 0, 0, 0, ....) and g1 (−ξ) = g1 (ξ) for all ξ ∈ c0

(
P̃, p

)
. For linearity of c0

(
P̃, p

)
with respect to coordinate wise addition and scalar multiplication, consider any

two sequences ξ1 and ξ2 ∈ c0

(
P̃, p

)
and scalars α, β ∈ R. Since the operator ∆(τ)



Certain Paranormed Fractional Ordered Pascal Difference Sequence Spaces 291

is linear [8],

g1 (αξ1 + βξ2)

= sup
n

∣∣∣∣∣
n∑

k=0

(
n∑

l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)

)
(αξ1k + βξ2k)

∣∣∣∣∣
pk
M

≤ max{1, |α|} sup
n

∣∣∣∣∣
n∑

k=0

(
n∑

l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)

)
ξ1k

∣∣∣∣∣
pk
M

+max{1, |β|} sup
n

∣∣∣∣∣
n∑

k=0

(
n∑

l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)

)
ξ2k

∣∣∣∣∣
pk
M

= max{1, |α|}g1 (ξ1) +max{1, |β|}g1 (ξ2) .

So, g1 is continuous with respect to scalar multiplication. The proof for other
spaces follows with the similar techniques.

Theorem 2.2. The spaces ℓ∞

(
P̃, p

)
, c0

(
P̃, p

)
and c

(
P̃, p

)
are complete linear

spaces paranormed by g1(ξ), defined in inequality (2.2).

Proof. Consider a Cauchy sequence {ξn} in ℓ∞

(
P̃, p

)
and ξn =

{
ξ0

(n), ξ1
(n), ξ2

(n), ...
}
.

For given ϵ > 0 , ∃ a positive integer N0(ϵ) such that
g1 (ξ

n − ξm) < ϵ, ∀n,m ≤ N0(ϵ). Then∣∣∣(P̃(ξn)
)
k
−
(
P̃(ξm)

)
k

∣∣∣ pkM ≤ sup
k

∣∣∣(P̃(ξn)
)
k
−
(
P̃(ξm)

)
k

∣∣∣ pkM < ϵ,

where
{(

P̃(ξ0)
)
k
,
(
P̃(ξ1)

)
k
, ....
}
is a Cauchy sequence in R. Since R is complete,

the sequence
(
P̃(ξn)

)
k
converges and suppose that

(
P̃(ξn)

)
k
→ (ξ)k as n → ∞.

For each fixed k ∈ N0,m → ∞ and n ≥ N0(ϵ), we have∣∣∣(P̃(ξn)
)
k
−
(
P̃ξ
)
k

∣∣∣ pkM ≤ ϵ (2.3)

But ξn =
{
ξk

(n)
}
∈ ℓ∞

(
P̃, p

)
, Therefore,

∣∣∣(P̃(ξn)
)
k

∣∣∣ pkM ≤ ∞. (2.4)
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From inequalities (2.3) and (2.4) we have,∣∣∣(P̃ξ
)
k

∣∣∣ pkM ≤
∣∣∣(P̃(ξn)

)
k
−
(
P̃ξ
)
k

∣∣∣ pkM +
∣∣∣(P̃(ξn)

)
k

∣∣∣ pkM ≤ ∞.

This means that the sequence P̃ξ ∈ ℓ∞

(
P̃, p

)
. This step completes the proof of

the theorem.

Theorem 2.3. The spaces c0

(
P̃, p

)
, c
(
P̃, p

)
, ℓ∞

(
P̃, p

)
are linearly isomorphic

to c0(p), c(p), ℓ∞(p) where 0 < pk ≤ H < ∞, respectively.

Proof. Consider a linear mapping T : ℓ∞

(
P̃, p

)
→ ℓ∞(p) defined by ζ = Tξ.

Clearly T (ξ) = θ when ξ = θ, so T is one-one. Let ζ ∈ ℓ∞(p), define a sequence
ξ = (ξk) as

ξk =
k∑

j=0

k∑
l=j

(−1)k−j

(
l

l − j

)
Γ (−τ + 1)

(k − l)!Γ (−τ − k + l + 1)
ζj, (k ∈ N) (2.5)

Then

g1 (ξ) = sup
n

∣∣∣∣∣
n∑

k=0

n∑
l=k

(−1)l−k

(
n

n− l

)
Γ (τ + 1)

(i− k)!Γ (τ − l + k + 1)
ξk.

∣∣∣∣∣
pk
M

=

(
sup
k

∣∣∣∣∣
k∑

j=0

k∑
l=j

(−1)l−j

(
k

k − l

)
Γ (τ + 1)

(l − j)!Γ (τ − l + j + 1)
ξj

∣∣∣∣∣
) pk

M

=

(
sup
k

|δkj ζj|
) pk

M

=

(
sup
k

|ζk|
) pk

M

< ∞,

where δij =

{
1, if i = j
0, if i ̸= j.

Thus, ξ ∈ ℓ∞

(
P̃, p

)
and T is onto and paranorm preserving. Hence ℓ∞

(
P̃, p

)
∼=

ℓ∞(p). In a similar manner, we can prove for other spaces.

3. Duals
This section deals with α−, β− and γ− duals of the new sequence spaces. We

now state certain lemmas which will be useful to prove theorems of this section.
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Lemma 3.1. [13] H ∈ (ℓ∞ (p) , ℓ (q)) iff

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

hnkB
1
pk

∣∣∣∣∣
qn

< ∞ for all integers B > 1. (3.1)

Lemma 3.2. [13] H ∈ (ℓ∞ (p) , c (q)) iff

sup
n

∑
k

|hnk|B
1
pk < ∞, (3.2)

and

lim
n→∞

(∑
k

|hnk − hk|B
1
pk

)qn

= 0, (3.3)

∃ (αk) ∈ H, pk > 0.

Lemma 3.3. [13] H ∈ (ℓ∞ (p) , ℓ∞ (q)) iff

sup
n∈N

(∑
k

|hnk|B
1
pk

)qn

< ∞. (3.4)

Where F is the collection of all finite subsets of N0 and K ∈ F and q = (qn) be a
bounded sequence of strictly positive real numbers.

Theorem 3.4. The α−, β− and γ− duals of the space ℓ∞

(
P̃, p

)
are given by{

ℓ∞

(
P̃, p

)}α

= D1(p),{
ℓ∞

(
P̃, p

)}β

= D2(p) ∩ cs,{
ℓ∞

(
P̃, p

)}γ

= D2(p),

where

D1(p) =
⋂
M>1

{
a = (ak) : sup

k∈τ

∑
n

∣∣∣∣∣∣
∑
k∈K

 n∑
j=0

n∑
l=j

(
l

l − j

)
Γ (−τ + 1) (−1)n−j

(n− l)!Γ (−τ − n+ l + 1)

 ak

∣∣∣∣∣∣
M

1
pk < ∞

}
,

D2(p) =
⋂
M>1

{
a = (ak) : sup

n

∑
k

∣∣∣∣∣∣
n∑

i=k

 i∑
j=0

i∑
l=j

(
l

l − j

)
Γ (−τ + 1) (−1)i−j

(i− l)!Γ (−τ − i+ l + 1)

 ai

∣∣∣∣∣∣
M

1
pk < ∞

}
,
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Proof. Considering x = (xk) ∈ ℓ∞

(
P̃, p

)
via the sequence y ∈ ℓ∞ (p) as

xm =
m∑
j=k

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
yk.

For all n ∈ N0 we have

xmam =

[
m∑
k=0

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
yk

]
am

=
m∑
k=0

[
m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
am

]
yk

= (Uy)m , form ∈ N.

where Ũm = (ũmk) is defined as

ũmk =

{∑m
j=k (−1)m−k ( j

j−k

) Γ(−τ+1)
(m−j)!Γ(−τ−m+j+1)

am, m ≥ k,

0, k > m.

By Lemma 3.1 we conclude that
{
ℓ∞

(
P̃, p

)}α

= D1(p). Now for beta- dual, we

consider

m∑
i=0

xiai =
m∑
i=0

[
m∑
k=0

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
yk

]
am

=
m∑
k=0

[
m∑
i=0

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
ai

]
yk

= (V y)m , (m ∈ N0),

where the matrix V = (vmk) is defined by

vmk =

{ ∑m
i=k

∑m
j=k (−1)m−k ( j

j−k

) Γ(−τ+1)
(m−j)!Γ(−τ−m+j+1)

ai, m ≥ k,

0, k > m.

Therefore we deduce that ax = (amxm) ∈ cs whenever x = (xk) ∈
{
ℓ∞

(
P̃, p

)}
iff

V y ∈ c as y = (yk) ∈ ℓ∞(p) . By using Lemma 3.1 with q = qm = 1 we conclude
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that
{
ℓ∞

(
P̃, p

)}β

= D2(p) ∩ cs . Hence the theorem proved and the duals of

other spaces can be obtained in a similar manner using Lemma 3.2 and Lemma
3.3.

4. Matrix Transformations
This section deals with the matrix mappings from

{
ℓ∞

(
P̃, p

)}
into different

known sequence spaces.

We characterize the classes
(
ℓ∞

(
P̃, p

)
, Y̆ (p)

)
where Y̆ = {c0, c, ℓ∞, ℓ1} .

For brevity, we write

ĥnk =
∞∑
i=k

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
hni

ank =
m∑
i=k

m∑
j=k

(−1)m−k

(
j

j − k

)
Γ (−τ + 1)

(m− j)!Γ (−τ −m+ j + 1)
hni

for each n, k ∈ N. Here certain known results are given which are essential for next
theorems.

Lemma 4.1. [16] Let λ be an FK space. For a triangle U and its inverse V with
µ arbitrary subset of ω̃ we have H = (hnk) ∈ (λU : µ) iff E(n) =

(
e(n)mk

)
∈ (λ : c)

for all n ∈ N and E = (enk) ∈ (λ : µ), where

e(n)mk =

{∑m
i=k hnivik, (0 ≤ k ≤ m)

0, (k > m)
and enk =

∞∑
i=k

hnivik

∀n,m, k ∈ N. Consider

sup
m

m∑
i=k

|ank|q < ∞, (4.1)

lim
m→∞

ank = ĥnk, (4.2)

lim
m→∞

m∑
i=k

|ank| , (4.3)

sup
m,k

|ank| < ∞, (4.4)

sup
n

∑
k

∣∣∣ĥnk

∣∣∣q < ∞, (4.5)



296 South East Asian J. of Mathematics and Mathematical Sciences

sup
k

∑
n

∣∣∣ĥnk

∣∣∣ < ∞, (4.6)

lim
n→∞

∑
k

ĥnk = 0, (4.7)

lim
n→∞

ĥnk = α̂k, (4.8)

lim
n→∞

∑
k

∣∣∣ĥnk

∣∣∣ =∑
k

|α̂k| , (4.9)

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ĥnk

∣∣∣∣∣
q

< ∞, (4.10)

sup
n,k

∣∣∣ĥnk

∣∣∣ < ∞, (4.11)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

ĥnk

∣∣∣∣∣ < ∞. (4.12)

Using Lemma 3.1 and Lemma 4.1 we state the following theorems.

Theorem 4.2.

(i) H = (hnk) ∈
(
ℓ1

(
P̃, p

)
, c0 (p)

)
iff (4.2), (4.4), (4.8) with α̂k = 0 and (4.11)

hold.

(ii) H = (hnk) ∈
(
ℓ1

(
P̃, p

)
, c (p)

)
iff (4.2), (4.4), (4.8) and (4.11) hold.

(iii) H = (hnk) ∈
(
ℓ1

(
P̃, p

)
, ℓ∞ (p)

)
iff (4.2), (4.4) and (4.11) hold.

(iv) H = (hnk) ∈
(
ℓ1

(
P̃, p

)
, ℓ1 (p)

)
iff (4.2), (4.4) and (4.6) hold.

Theorem 4.3.

(i) H = (hnk) ∈
(
ℓ∞

(
P̃, p

)
, c0 (p)

)
iff (4.2), (4.3) and (4.7) hold.

(ii) H = (hnk) ∈
(
ℓ∞

(
P̃, p

)
, c (p)

)
iff (4.2), (4.3), (4.8) and (4.9) hold.

(iii) H = (hnk) ∈
(
ℓ∞

(
P̃, p

)
, ℓ∞ (p)

)
iff (4.2), (4.3) and (4.5) with q = 1 hold.
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(iv) H = (hnk) ∈
(
ℓ∞

(
P̃, p

)
, ℓ1 (p)

)
iff (4.2), (4.3) and (4.12) hold.

Acknowledgment
The authors would like to thank the anonymous referees for their careful reading

and necessary comments which have improved the presentation of the paper.

References

[1] Altay B., Başar F., The matrix domain and the fine spectrum of the difference
operator ∆ on the sequence space ℓp, (0 ¡ p ¡ 1), Commun. Math. Anal., 2(2)
(2007), 1–11.
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[10] Başar F., Altay B., On the space of sequences of p-bounded variation and
related matrix mappings, (English, Ukrainian summary) Ukrain. Mat. Zh.,
55(1) (2003), 108–118; reprinted in Ukrainian Math. J. 55(1) (2003), 136–147.

[11] Dutta S., Jena D., Fractional difference sequence spaces via Pascal mean,
International Conference of Mathematical Sciences and Applications, (2023),
Communicated.



298 South East Asian J. of Mathematics and Mathematical Sciences
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[23] Ye¸silkayagil M., and Başar F., On the paranormed Nörlund sequence space
of non-absolute type, Abstr. Appl. Anal., 2014, Article ID 858704, 9 pages,
2014.


