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Abstract: In this article, we introduce certain new paranormed Pascal difference
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1. Introduction

Suppose the set of all real or complex sequences is denoted by A. By /., ¢o and
¢, we denote the spaces of all bounded, null and convergent sequences, respectively,
which are subspaces of A normed by || = ||c= supy |zx|. Also the spaces of all
convergent, bounded and absolutely convergent series are denoted by cs, bs and /4,
respectively. Through out the paper summation without limits runs from 0 to oo.
For p = (px) a bounded sequence of strictly positive real numbers, Maddox [18§]
introduced ¢ (p), ¢ (p) and £ (p) as

Co( )_ {f () € Az lim & [™ :0}7
5: (&) € A lim & — 1" =0 for some ZER}

e e <)

keN
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and these are complete spaces with the paranorm

g (&) = sup ||
keN

, where M = max{1,sup py}.

k
Now, define the set M (X,Y) = {¢ = (¢x) : €C = (&) € Y, VE € X}. The a—
B— and v— duals of a sequence space X are as follows:

X =M(X,0), XP = M(X,cs) and X" = M (X, bs).

The difference sequence spaces X (A) = {£ = (&) : A (&) € X} for X = {cg, ¢, loo}
was introduced by Kizmaz [17], which was generalized by Et and Colak [12]. Then
difference sequence spaces attracted the attention of several authors [5, 12] in dif-
ferent directions. Recently, Jena and Dutta [[14], [15]] introduced Bell difference
sequence spaces and fractional ordered Euler Riesz difference sequence spaces. The
difference space bv,, consisting of the sequence x = () such that (xy — z4_1) € ¢,
have been introduced in the case 0 < p < 1 by Altay and Bagar [1], and in the case
1 < p < oo by Basar and Altay [10]. The reader also refer to the recent mono-
graphs [9] and [20], and references therein, devoted to the matrix transformations
and related topics, and the papers [2], [3], [6], [19], [22] and [23] on the domain of
certain triangles in some paranormed Maddox sequence spaces.

For a proper fraction 7, Baliarsingh [7], Baliarsingh & Dutta [8] introduced the
fractional difference operator A(™) as

; i L+l
Az =3 (1) j!r(r( — +> 1)k (1.1)

J
along with its inverse

A =3 (<1 j!FIEE;T—j;an - (1.2)

J
It is assumed that the series of fractional difference operators are convergent.
The Pascal mean P described as Pascal matrix P = p,,; is defined by (see [21]).

— Pmk — -
0 ifk>m.
Its inverse P~! is given by
m—Fk m .
— < k<
I e S B (13

0 if k> m.
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Pascal sequence spaces po,, po and p. are introduced by Polat [21]. Then Aydin
and Polat [5] introduced Pascal difference sequence spaces of integer order m as,

X (AM) ={e= (&) e A: AMe e X}, (1.4)

for X = {peo , 0 , Pe}- )
Recently, Dutta and Jena [11] introduced the matrix B = (PA(T)) by combining

Pascal mean P and fractional difference operator A(”, which can be expressed as

m - m I'(r+1 .
R oy S DR (lfk)!F((‘rtlzrk+l) , if0<k=m
P=(PAT) = , (1.5)
mn 0, if k> m.

Equivalently, it is written as

1 0 00
- (1-— %) 1 00
Br=(me) = | (1274750 2-7) 1 0
and the inverse of P = (P (A(T))) is given by
m m—Fk j I'(—7m+1 .
(;1371) _ Zj:k (1) (]ik) (mfj)ll“((f-rtrzerjJrl)’ if0<k<m
mk O’ Zf k> m.

Now, we have

n

u n ; I'(t+1
(P (A(T)) (Ij)n = Z (n B k’) l (—1) ﬁxkl

k=0 =0

B gy N n [(r+1)
_; [Z;(_l)l k(n—l) (I—BT(r—l+kt1)| "™

=

for n,k € Ng =NU{0} . In particular for n = 0, we have (P (A™)z)
similarly, (P (A™)x), = (1 — 1)z + 21,
(P (A(T)) 9[:)2 = (1 — 27 + @) zo+ (2 —T)xy + X9, ... and so on.

o = %o, and

Lemma 1.1. [11] The operator p = P (A™M) is linear.
Now our interest is to introduce the new paranormed difference sequence
spaces of fractional order which generalizes many known spaces. We introduce the

spaces ¢ (‘i?, p), c (‘i?, p), loo <‘i§, p) by using the product of Pascal mean P with

fractional operator A(™. We prove certain topological properties and characterize
the matrix transformations of these spaces.
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2. New sequence spaces
Now, for a positive real number 7 and a bounded sequence p = (py), we define
the following classes

o (Bop) = {€= (@) e A Pe e alp) ],
o (Fp) = {6 = (@) e Tee )},
c(Bop) = {e= () er:Pee ).

The above classes generalize the following spaces as follows:

(1) Fort=0and p=e=(1,1,1,...), it reduces to p., pp and p, studied by Polat
[21].

(77) For 7 = 1 and p = e, it reduces to p.(A), po(A), pso(A), studied by Aydin and
Polat [4].

(7ii) For 7 = m and p = e, it reduces to pc(A(m)), Do (A(m)) and ps (A(m)), where
Al =5~ 17 (T) Ty—; studied by Aydin and Polat [5].

() For p=e=(1,1,1,...), it reduces to {« (75%>, introduced by Dutta and Jena
[11]. )

Now with B - transform of £ = (§,) we define the sequence ¢ = (¢,,) , (n € N) as
follows :

Gn = (fm)n - ii (=0 (ni z) (i — k)u?((:jlll k+ 1)5’“ (2.1)

k=0 =k

Theorem 2.1. The spaces { (@,p), Co (@,p) and c <‘$,p) are linear spaces
paranormed by

(2.2)

91 (§) = sup

n

»3 k(T I'(r+1)
kom(_l) <”—l>(i—k3)!l“(7—l+k+1)§k

if and only if inf, pr > 0.
Proof. Consider the space ¢ (’i?, p). We observe that g; (f) = 0, where § =

(0,0,0,0,....) and g; (=€) = g1 (§) for all £ € ¢ (iﬁ,p). For linearity of c¢q (‘i?,p)
with respect to coordinate wise addition and scalar multiplication, consider any
two sequences & and & € ¢ <‘i¥, p) and scalars o, 8 € R. Since the operator A7)
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is linear (8],

g1 (a1 + BE2)
SIAS -k [ N I'(r+1)
2 (Z(_l) (n—l) (i—k)!l“(r—l+k+1)) (a8, + Fta)

- - n F(T—l—l) M
— (—1)1 k<n_l) (i—k)!F(T_l+k+1)>flk

~ [ -k [ N I'(r+1) "
mas(1, 13} sup 3 ( () e 1)) 6,
= mar{1.fol}g: (&) + mar{1, |9]}g: &)

Pk
M

= sup
n

< maz{l,|a|} sup

So, g1 is continuous with respect to scalar multiplication. The proof for other
spaces follows with the similar techniques.

Theorem 2.2. The spaces {4, (‘b,p), Co (‘i?,p) and c (‘i?,p) are complete linear
spaces paranormed by g1(§), defined in inequality (2.2).
Proof. Consider a Cauchy sequence {£"} in £« <£f3,p) and " = {&)(”),&(n),&(”), }

For given € > 0 , 3 a positive integer Ny(¢) such that
g1 (§" — &™) <€, Yn,m < Ny(e). Then

Pk

" <smp|(Ben), - (BEm),

M
<e,

(&)~ (Bem),

where { (‘ﬁ(f%)k , (‘i&‘(fﬂ)k , } is a Cauchy sequence in R. Since R is complete,

the sequence (‘jﬁ?({”))k converges and suppose that (‘b(f”))k — (§)r as n — oc.
For each fixed k € No, m — oo and n > Ny(e), we have

‘(‘3(5")>k - (@f)k i <e (2.3)
But £" = {5,5”’} € ly (‘i?,p) , Therefore,
(%) |7 <. 2:)
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From inequalities (2.3) and (2.4) we have,

() |7 = |(Be), — (We),

This means that the sequence P& € (o (q?, p). This step completes the proof of
the theorem.

Theorem 2.3. The spaces cg <‘,~B,p> , C <‘$,p> s o (‘ﬁ,p) are linearly 1somorphic
to co(p), c(p), loo(p) where 0 < pp, < H < o0, respectively.

Pg

P
M M
< 0.

] ()

k

Proof. Consider a linear mapping 7" : {, (iﬁ,p) — loo(p) defined by ¢ = T€.

Clearly T'(§) = 0 when £ = 0, so T is one-one. Let ( € l(p), define a sequence
£ = (&) as

i k k—j ) I'(—7 1
=221 (l > (k— )T ((—T jk)+ ke (25

—J

Then

non I—k n L'(r+1)
k=0 I=k =1 ( )(i—k)!F (7-_[+k+1)§k.

FE ik I'(r+1)
22 (1 (k—l)(l—j)!F(T—ZJerrl)gj

= <81;P|5kj Cj|> = (SléplCM) < 00,

1, ifi=j
where (5ij:{ 0. ifit

Thus, & € ( (‘53, p) and T is onto and paranorm preserving. Hence /(. (i]~3, p> >
lo(p). In a similar manner, we can prove for other spaces.
3. Duals

This section deals with a—, — and y— duals of the new sequence spaces. We
now state certain lemmas which will be useful to prove theorems of this section.
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Lemma 3.1. [13] H € (! (p), £ (q)) iff

dn
sup Z Z hnkBi

KeF P

Lemma 3.2. [13] H € ({ (p),c(q)) iff
Supz ‘hnk| Bé < o0,
"ok

< oo for all integers B > 1.

and o
o (s i) <0
k
d(ax) € H, pr, > 0.
Lemma 3.3. [13] H € (¢ (p) , 0 (q)) iff

qn
sup (Z |k | Bplk) < 00.
k

neN

293

(3.4)

Where F is the collection of all finite subsets of Ng and K € F and q = (q,,) be a

bounded sequence of strictly positive real numbers.

Theorem 3.4. The a—, 53— and v— duals of the space {4 (@,p) are given by

{t< (B.0)} = D),

{foo (’i‘m) }B = Dy(p) N s,
(t(20)) = D

n n 1 F(—7—+1)(_1)n—j
keK L‘ Z<l > (n=D (=7 —n+1+1)

S () Ter ey
Z|:Zz<lj)(il)!F(T@'—H—Fl)]ai

ag
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Proof. Considering x = (zj) € (o <‘,f3,p> via the sequence y € l (p) as

o o _1\m—k .] F(_T+1)
mm—gﬂ D (j—k:)(m—j)!F(—T—m+j+1)yk'

= N m—k J F(—T—|—1) i
B [;;(—1) <j — k) (m— )0 (=1 —m+j+ 1)yk_ U

= - . m—k J F(—T—|—1) i

_;[;(—1) (j—k) (m—j)!r(—T—m+j+1)am_ Yk

= (Uy),, form € N.

where U, = (TUpi) is defined as

m m—k j I(—7+41)
Uty = Xt GO (L) ey tme. M2 K,
Oa kf > m.

By Lemma 3.1 we conclude that {Eoo (iﬁ,p)} = D;(p). Now for beta- dual, we

consider

m R mk [ J I(—7+1)
;xiai_;lgg(_l) (j—k)(m—j)!F(—T—m+j+1)yk Um
m [ m_ m m—k [ ] I'(—7+1)
:;[;;(_1) (j—k)(m—j)!r(_T_m+j+1)ai Yk

= (Vy)m ) (m € NO)?
where the matrix V' = (v,,;) is defined by

m m m—k j I'(—741)
T Zi:kz Zj:k (_1) (Jik) m—IT(—7—m1j+1) > m >k,
07 l{? > m.

Therefore we deduce that az = (a,,2.,) € cs whenever x = (xy) € {Koo (‘i?, p>} iff
Vy € casy = (yr) € loo(p) . By using Lemma 3.1 with ¢ = ¢, = 1 we conclude



Certain Paranormed Fractional Ordered Pascal Difference Sequence Spaces — 295

~ B
that {Eoo (‘B, p)} = Dy(p) Nes . Hence the theorem proved and the duals of

other spaces can be obtained in a similar manner using Lemma 3.2 and Lemma
3.3.

4. Matrix Transformations )
This section deals with the matrix mappings from {ﬁoo <£B, p)} into different

known sequence spaces.
We characterize the classes <€oo (ﬂ?,p) Y (p)) where YV = {co,¢,lo0, 01} .

For brevity, we write

7 - Nl m—k ] F(_T+1) )
h"’“‘ZZ(_” (j-k)(m—j)!r(—T—m+j+1>hm

i=k j=k
m m m— j F(—T—|—1)

for each n, k € N. Here certain known results are given which are essential for next
theorems.

Lemma 4.1. [16] Let A be an FK space. For a triangle U and its inverse V with
p arbitrary subset of @ we have H = (hyni) € (Av = ) iff E™ = (e™ ) € (A ¢)
for alln € N and E = (en) € (A : p), where

o )i, (0<k<m) S~
c mee ana eng = niUs
Vn,m,k € N. Consider
sup » _an|” < oo, (4.1)
™=k
m—0o0
A Zk [an (4.3)
sup |ank| < oo, (4.4)
m,k
~ q
sup } _ |fni | < o0, (4.5)
"ok
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supz | < 00, (4.6)
k
Tim zk: Ak = 0, (4.7)

n—0o0

nk

fm > |

=Xl (1.9)

sup hn < 00, 4.10
OB (0
(4.11)
n,k
sup ZZEM < 00. (4.12)
NKEF | eN keK

Using Lemma 3.1 and Lemma 4.1 we state the following theorems.

Theorem 4.2.

(i) H = (hnk) €
hold.

Lco(p >zﬁ(4 2), (4.4), (4.8) with &y, = 0 and (4.11)

(ii) H = (hu) € c(0) i (42), (44), (4.8) and (4.11) hold

(iii) H = (hu) € Lo () U] (4:2), (4:4) and. (4.11) hold.

(iv) H = (hu) € 3 (p)) ff (4:2), (4:4) and (4.6) hold.

Theorem 4.3.

(i) H=(hw) € (eoo (fjs,p) , Co (p)> iff (4.2), (4.3) and (4.7) hold.
(ii) H = (hu) € (eoo (fjs,p) ,c(p)> iff (4.2), (4.3), (4-8) and (4.9) hold.

(iii) H = (hn,) € (eoo (fjs, p) Lo (p)) iff (4.2), (4.3) and (4.5) with ¢ = 1 hold.
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(iv) H = (hy) € (goo (fjs, p) A (p)> iff (4.2), (4.3) and (4.12) hold.
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